On the Advantages of an Alternative MPI Execution Model for Grids*

A. C. Senal A. P. Nascimento}J. A. da Silva¢ D. Q. C. Vianna, C. Boeres and V. E. F. Rebello
Instituto de Computagdo, Universidade Federal Fluminense (UFF),RJ, Brazil
e-mail:{asena,depaula,jacques,dvianna,boeres,vinod} @ic.uff.br

Abstract

The MPI message passing library is used extensively in
the scientific community as a tool for parallel programming.
Even though improvements have been made to existing im-
plementations to support execution on computational grids,
MPI was initially designed to deal with homogeneous, fault-
free, static environments such as computing clusters. The
typical programming approach is to execute a single MPI
process on each resource. However, this may not be appro-
priate for heterogeneous, non-dedicated and dynamic en-
vironments such as grids. This paper aims to show that
programmers can implement parallel MPI solutions to their
problems in an architectural independent style and obtain
good performance on a grid by transferring responsibility
to an application management system (AMS). A comparison
of program implementations under a traditional MPI execu-
tion model and a fine-grain model highlight the advantages
of using the latter.

1. Introduction

In the last decade, exploiting parallelism in computing
has become essential as applications seek more computa-
tional power to obtain solutions in acceptable run times.
Although computers have became exponentially faster, ap-
plication demands have also increased in terms of data stor-
age, memory, networks bandwidth and processors. As a
consequence of technological advances, the design of more
complex applications is permitting research in new areas of
science to be undertaken. The maturity of cluster comput-
ing, together with the advent and rapid development of grid
computing, has caught the eye of the scientific community.
By providing more cost effective computing power, they are
now within the reach of nearly every researcher and have
become the computing platforms of choice.

*This work is funded by FAPERJ and CNPq.
TFunded by a postgraduate scholarship from CNPq.
tFunded by a postgraduate scholarship from FAPERJ.
§Funded by a postgraduate scholarship from CAPES.

Programmers typically view computing clusters as con-
sisting of a fixed number of fault-free homogeneous re-
sources interconnected on a fast local network. Since the
objective is to maximize performance, resources are usu-
ally dedicated to the execution of one parallel application
at a time. In addition, it is commonly presumed that fail-
ures are unlikely during execution so little or no provision
is made for applications to tolerate faults. In consideration
of these characteristics, numerous tools have been devel-
oped to facilitate the development of parallel programs. The
MPI library [11] has become the de facto message pass-
ing standard among parallel application developers. In most
MPI programs, a fixed number of processes are created at
startup, one per resource, and each execute for the entire
duration of the application [6]. Thus, designing programs
for regularly structured problems can be relatively effort-
less. However, many parallel applications tend to be irreg-
ular, have dynamic computing demands, and thus require
scheduling/load balancing and latency hiding techniques in
order to execute efficiently.

On the other hand, grid environments are composed
of numerous heterogeneous resources typically dispersed
across wide area networks. Belonging to different organi-
zations, resources may have different access policies and
unpredictable availability causing them to enter or leave the
grid without prior notice. The computing power available
to an application can even be variable if resources are being
shared with local or other grid users. Many grid applica-
tions are designed to run for days or weeks at a time and,
being longer than the mean-time between failures of grid
resources, faults are not only probable but should be ex-
pected. In comparison with cluster environments, all these
issues make computational grids extremely more complex
for parallel applications to utilize effectively. If parallel ap-
plications are to harness the potential of grids, the applica-
tions designers must be aware of these particularities, and
create applications that adapt efficiently. Addressing these
issues using the predominant MPI programming model re-
quires significant programming effort.

Implementations of MPI for grids are currently lim-
ited to the Globus Toolkit-enabled MPICH-G2 [12],

IEE |-:

COMPUTER
SOCIETY

Seventh IEEE International Symposium on Cluster Computing and the Grid(CCGrid'07)
0-7695-2833-3/07 $20.00 © 2007 IEEE

LAM/MPI [10] and MPICH-GF [19] libraries. While these
aim to facilitate the uptake of grid computing by allow-
ing existing cluster-based MPI programs to run on the grid
without modification (recompilation is necessary), they lack
the capability to deal with dynamic heterogeneous environ-
ments efficiently. MPICH-G2 [12], being an extension of
the cluster-based MPICH implementation, does not sup-
port dynamic process creation. While this is addressed in
LAM/MPI, MPICH-GF uses dynamic process creation to
implement fault tolerance transparently.

This paper compares the performance of a typical MPI
program implementation based on an architecture depen-
dent execution model (where the number of MPI processes
is proportional to the number of processors available) with
one based on an architecture independent execution model
(where the number of MPI processes is proportional to the
degree of parallelism in the application). The advantages of
this fine-grain model for MPI applications when running on
a grid under the management of an AMS is highlighted. The
EasyGrid AMS (based on an existing standard MPI imple-
mentation) is embedded into the application when the user’s
cluster-based MPI program is recompiled, allowing it to ex-
ecute in an efficient and robust manner. Even though the
EasyGrid AMS incurs an overhead to manage the execution
of significant larger number of MPI processes, the execu-
tion model offers the middleware the opportunity for better
performance and more cost effective robustness in dynamic
and heterogeneous grid environments.

2. Related Work

In order to develop their parallel programs, designers
must follow a suitable parallel programming model. The-
oretical models, like PRAM [5] whose goal is to help com-
pare and evaluate the design of parallel algorithms, allow
designers to abstract away details of the system architec-
ture. However, this very abstraction makes the model in-
adequate for practical use in real world applications. In an
attempt to be more general, the Bulk-Synchronous Paral-
lel (BSP) model [18] addresses both theoretical and practi-
cal issues. For programming simplicity, the model assumes
synchronous execution across all resources, but captures the
costs associated with computation and communication. In
the same vein, the Coarse Grained Multicomputer (CGM)
model [1] enforces an additional restriction that the com-
putational phase must be larger than communication one.
Both a BSP and CGM algorithms consist of a sequence of
steps or rounds, which are made up of well defined local
computation and global communication phases.

Interestingly, a key characteristic of these and most other
models is that they specify or implicitly imply that each pro-
cess is mapped to a virtual processor for the duration of the
execution of the parallel application. This is perfectly ac-

ceptable for homogeneous clusters with a sufficient number
of processors. However, in the case where virtual proces-
sors outnumber physical processors or heterogeneous re-
sources are employed, the best allocation of processes to
processors may not be clear. In dynamic grid environments,
this execution model may not be the most appropriate.

Due to technological motivations, experience and sim-
plicity, the majority of parallel program designers chose the
messaging passing programming approach, where multiple
tasks can be defined, each associated with local data, and
which interact amongst themselves through the exchange
of messages. The fact that the SPMD model is more com-
monly used in the scientific community is indicative of the
need to simplify the exploitation of parallelism.

Charm++ [9] is a parallel programming language based
on C++, in which programs are decomposed into a num-
ber of cooperating message-driven objects. These objects
are mapped to physical processors by an adaptive runtime
system. The runtime system transparently supports load
balancing and fault tolerance strategies through the auto-
matic checkpointing and migration of objects. Due to the
popularity of MPI, researchers developed an implementa-
tion, AMPI [7], based on Charm++. MPI processes are im-
plemented as light-weight migratable objects (or threads),
which are then managed by Charm++ runtime system. Con-
verting an MPI program to an AMPI one however may re-
quire some modifications.

The execution model adopted by the EasyGrid AMS fol-
lows a similar application centric philosophy, but goes one
step further, dividing the sequence of steps of an individ-
ual process into tasks (which are implemented as MPI pro-
cesses). This model permits dynamic re-scheduling and
fault tolerance without the need for process migration and
checkpointing, respectively. For deployability, the Easy-
Grid AMS is based on the widely available standard im-
plementation of LAM/MPI.

3. A MPI Execution Model for Grids

Being heterogeneous, shared and dynamic environ-
ments, all of these characteristics combined make grids ex-
tremely difficult programming targets for scientists entirely
inexperienced in the nuisances of these systems. In order
to relieve programmers of this burden, and fundamental to
the success of grid computing, middlewares are being de-
veloped to hide these complexities [2, 3, 8, 17]. Given
the dynamic behavior of both grids and applications, these
middlewares are designed to manage the execution of ap-
plications, determining their requirements, and decide on
the most appropriate allocation of resources. During execu-
tion, they are able to adapt the application, for example by
rescheduling processes to improve performance and recov-
ering or restarting processes when failures occur.

IEE I-'

COMPUTER
SOCIETY

Seventh IEEE International Symposium on Cluster Computing and the Grid(CCGrid'07)
0-7695-2833-3/07 $20.00 © 2007 IEEE

With the availability of efficient grid management sys-
tems, programmers can concentrate their efforts on design-
ing parallel programs that execute efficiently in a hypotheti-
cal ideal environment [6]. In this way, only one solution that
maximizes the parallelism exposed in the problem needs
to be designed, independent of the computing platforms on
which it will execute on both now and in the future.

SPMD MPI applications are typically designed to exe-
cute identical long running processes, one per homogeneous
processor [6]. In dynamic grid environments, this one pro-
cess per processor (1PProc) execution model becomes in-
appropriate since the granularity of each process will re-
quire adjustment. The fact that resources maybe hetero-
geneous, shared with local jobs, and fault-prone not only
makes this model utterly inefficient but also makes man-
aging the execution of applications extremely complex and
expensive in terms of computation and storage.

If the maximum parallelism is exposed when designing a
parallel program, the application may become fine grained.
An application is said to be fine grained if the average pro-
cess computation time is smaller than the average commu-
nication time, otherwise, the application is coarse grained.
Although fine-grained processes are sequences of code that
cannot be parallelized further, they can be divided into basic
blocks delimited by communications (initiated by receives
and finalized by sends) and thus defining application fasks.
Typically, due to the high(er) communications costs in a dis-
tributed environment, the performance of fine grained ap-
plication may be poor, especially if the allocation of tasks is
inappropriate. Clustering mechanisms can be used to map
tasks to the same processor in accordance with their de-
pendencies, thus decreasing communication costs. For grid
management systems, clustering processes (tasks) appropri-
ately is easier than either extracting parallelism automati-
cally from an application or adjusting process granularity, at
runtime. Under a one process per task (1PTask) execution
model, even though managing a large number of processes
can incur a significant additional overhead, grid manage-
ment systems can manipulate with greater ease tasks to im-
prove performance given the need to migrate processes and
to recover from failures in this dynamic environment. It
should be noted, however, that the 1PTask execution model
is hampered by the fact that the number of processes that
can be created statically in standard installations of MPI is
limited to a couple of hundred [14].

The size of an MPI process directly affects the design of
the scheduling and fault tolerance mechanisms that should
be employed. Coarse grained applications with long run-
ning processes must be executed in an environment that
provides an efficient checkpointing mechanism, if the re-
execution of processes is to be avoided. Checkpointing re-
quires sophisticated and costly schemes to guarantee con-
sistency and allow MPI processes rollback their execution

to their last recorded state [4]. However, the penalty suf-
fered to re-execute failed short-lived processes may be suf-
ficiently small enough to dispense with a checkpoint-based
scheme. Since all processes are already in execution under
the 1PProc model, any change in the environment which
affects performance (e.g. processor failure, external work-
load) will require the application to adjust through pro-
cess migration (i.e. the process must be stopped, its context
transferred and the process restored on the new resource).

With the increasing demands for grid resources, their ef-
ficient utilization is fundamental. Programmers wish to ex-
plore the benefits of grid computing without having to be
concerned its dynamic behavior. Programming in an ar-
chitecturally independent style not only simplifies the pro-
gramming effort but make the grid more accessible to less
experienced programmers. However, in order to achieve
high performance, it is imperative to employ a manage-
ment system capable of dealing with the characteristics of
grids accordingly and thus adapting MPI application trans-
parently. The execution model adopted by such manage-
ment systems directly influences their efficiency.

4. EasyGrid AMS

The EasyGrid middleware is an Application Manage-
ment System (AMS) for any MPI implementation with dy-
namic process creation. The EasyGrid AMS is automat-
ically embedded into the MPI parallel application with-
out modifications to the user’s original code at compila-
tion time. It transforms applications into autonomic ver-
sions, capable of adapting their execution in accordance
with changes in the grid environment [13, 14]. These ap-
plications have high deployability since the EasyGrid AMS
is not dependent on other grid system middleware, need-
ing only the Globus Toolkit and the standard LAM MPI li-
brary [10] to be installed on grid resources.

Each MPI application has its own EasyGrid AMS (tuned
to the specific needs of the application), which is a three
level hierarchical management system composed of: a sin-
gle Global Manager (GM), at the top level that supervises
the sites in the grid where the application is running; at each
site, a Site Manager (SM) is responsible for the allocation of
the application processes to the resources at the site; and fi-
nally, the Host Manager (HM), one for each resource, takes
on the responsibility for the scheduling, creation and exe-
cution of application processes allocated to that respective
host. Management and application processes may execute
on the same processor, competing for CPU time. However,
the intrusion of the management processes is minimal be-
cause they behave like event-driven daemons.

Each management process is based on a subsumption ar-
chitecture and is composed of four layers: application mon-
itoring, process management, dynamic scheduling and fault

IEE |-:

COMPUTER
SOCIETY

Seventh IEEE International Symposium on Cluster Computing and the Grid(CCGrid'07)
0-7695-2833-3/07 $20.00 © 2007 IEEE

tolerance. Each layer has a distinct function but can modify
the behavior of a lower one. The dynamic creation of MPI
processes and the routing of messages between them are
performed by the process management layer. The proac-
tive dynamic scheduling and fault tolerance layers utilize
status information provided periodically by the monitoring
layer, to decide if, and when, it is necessary to activate a re-
scheduling mechanism and to detect and treat process and
resource failures.

Although the AMS follows the 1PTask execution model,
and unlike the standard execution of MPI programs, the
AMS does not create all application processes at once.
Their creation is carried out dynamically and is carefully
orchestrated according the AMS’s scheduling policy. Since
this is transparent to the user’s MPI program, the AMS must
also manage all communications between processes (e.g. it
is possible for a process to send a message to another that
has yet to be created). To minimize overheads, the Easy-
Grid AMS only re-allocates those processes which have yet
to be created, processes in execution are never migrated.

The EasyGrid AMS employs a hybrid scheduling ap-
proach which combines the benefits of static and dynamic
scheduling [13]. The static scheduler can use more sophis-
ticated heuristics, while the dynamic scheduling subsystem,
executing concurrently with the application, can make its
scheduling decisions based on more precise runtime infor-
mation. This subsystem is distributed in the dynamic sched-
ulers associated with each of the management processes in
the three level AMS hierarchy. This architecture allows
each application to have its own scheduling policies, and
that different policies be used at different levels of the hi-
erarchy or within the same level. This approach allows the
application to match its requisites with the characteristics of
the available grid environment [13].

The EasyGrid AMS’s management of processes permits
the recovery from faults without the need to interrupt the
execution of the application [14]. The AMS uses distinct
inter-communicators between each pair of processes (for
both management and application processes) so that faults
can be easily identified and isolated. The AMS implements
both retry and alternative resource techniques together with
a message log to provide a means to recover from both pro-
cess and processor failures [14]. In the case of failures, pro-
cesses are re-executed since no checkpoints are carried out.

5. Experimental Analysis
5.1. Case Study Applications

Although the EasyGrid AMS can be used in conjunc-
tion with a variety of classes of MPI parallel applications,
this paper investigates the benefits of executing a MPI paral-
lel implementation for CPU-bound master-worker applica-

tions under the 1PProc and 1PWork execution models. This
class of application was chosen for three reasons; this is a
commonly adopted paradigm for implementing data paral-
lel programs [6, 15]; a version of this strategy which dy-
namically adjusts the workload given to each processor is
often used in dynamic heterogeneous environments; finally
it has a communication pattern that stresses the EasyGrid
AMS management hierarchy.

The master-worker application analyzed in this work, de-
noted as MWork, is a synthetic one where the amount of
work executed by each MPI process can be controlled in
order to evaluate the performance in relation to the appli-
cation’s granularity. The minimum amount of work per-
formed by each worker is a workload unit.

In traditional MPI master-worker implementations,
where one MPI process per processor is created stati-
cally [6], one master process distributes workload units
among the remaining worker processes. Here we con-
sider three different implementations: (1) static, where the
master process distributes all of the workload units evenly
among the worker processes, assuming they are executing
on homogeneous resources; (2) static enhanced, where
the master process distributes the workload units among the
worker processes proportionally (determined apriori) to the
computational power of their respective resources; and (3)
on demand, where the master process distributes work-
load units to worker processes as they become idle. These
MPI implementations are referred to as: MWork S-MPI,
MWork SE-MPI and MWork OD-MPI, respectively. These
MWork MPI versions are not executed under the EasyGrid
AMS and the total amount of workload units that the master
should distribute is predefined.

In the MWork implementation managed by the EasyGrid
AMS and denoted by MWork AMS, each worker process
executes only one workload unit. Although the total number
of worker processes is predefined (equivalent to the work-
load of the application) and their allocation is specified a
priori by the AMS static scheduler, each MPI worker pro-
cess is created dynamically by the AMS on the resource
considered most appropriate by the global and site man-
agers and at a time determined by that resource’s host man-
ager. The master communicates with each worker indirectly
via the AMS management processes.

In addition, a real world SPMD parallel application
which computes macroscopic thermal dispersion in a
porous media (the Thermions application) [16] is also an-
alyzed. Given that a porous media is composed by solid
and fluid elements, the thermal dispersion is evaluated by
the movement of a large number of hypothetical particles,
called Thermions, from a fixed release point, through the
media. The position, energy, a random component, and
the thermal properties of the solids or the flux velocity of
the fluid determine the distance traveled within a period of

IEE |-:

COMPUTER
SOCIETY

Seventh IEEE International Symposium on Cluster Computing and the Grid(CCGrid'07)
0-7695-2833-3/07 $20.00 © 2007 IEEE

time, by each individual thermion. The computational cost
to calculate the path for each thermion varies and cannot
be precisely determined a priori. For this application, the
workload unit corresponds to the determination of the path
of a single thermion. Two versions of the Thermions were
evaluated: an on demand MPI implementation, called as
Thermions OD-MPI; and one executed under the EasyGrid
AMS, denoted as Thermions AMS.

5.2. The Grid Environment

The experiments were carried out on a geographically
distributed, four site grid environment interconnected by gi-
gabyte and fast Ethernet switches. All the available pro-
cessors run Linux Fedora Core 2, Globus Toolkit 2.4 and
LAM/MPI 7.0.6. Sites 1, 2 and 3 are composed of 28 Pen-
tium 4 2.6 GHz processors and 3 Pentium 4 3.2 GHz pro-
cessors (2 in Site 2 and 1 in Site 3), where Site 1 and 3
contains 8 processors each and Site 2, 15 processors. Site 4
is composed of 22 Pentium II 400 MHz processors.

Figure 1. The EasyGrid AMS configuration.

Of the given configuration, 53 resources were available
for execution, but only 52 execute worker processes. One
of the resources located at Site 2 was chosen to execute the
master. The EasyGrid AMS management structure for this
application is presented in Figure 1. The white ellipse is
chosen to execute only the GM and master processes, while
each one of the remaining resources executes a HM process
that manages the creation and execution of each worker pro-
cess allocated to their respective host machine. Addition-
ally, each resource shown in black executes a SM to man-
age the execution at that site. Thus, the resources in black
have an extra overhead produced by the execution of two
management processes (SM and HM).

5.3. Heterogeneous Resources

The purpose of the first set of experiments is to analyze
the impact of resource heterogeneity on the performance of
the four MPI implementations. Three execution environ-
ments are compared: Scenario (1) represents a dedicated
and quasi-homogeneous cluster, with only resources from
Site 2 being used; Scenario (2) represents a heterogeneous
but static computational grid, composed of resources from
Sites 1, 2 and 3; and Scenario (3): a heterogeneous and dy-
namic grid, again composed of resources from Sites 1, 2
and 3. As the resources of these sites have almost the same
clock speed, heterogeneity was introduced by running ex-
ternal CPU-bound programs concurrently with the MWork
applications. The resources of Site 2 provide 100% of their
computational power to the application, while Sites 1 and
3 only provide 25% and 50%, respectively. To increase
heterogeneity inside the sites, two machines from each site
were chosen to run extra CPU-bound programs, and so only
deliver half of the computational power offered by the re-
maining machines of that respective site. In Scenario (3)
these extra CPU-bound programs migrate to different ma-
chines during the execution of the MWork applications, to
represent dynamic grid behavior.

Table 1 presents the average execution times of three ex-
ecutions of each MWork implementation for a total of 500
uniform workload units. Three separate instances were also
run for different sizes of workload unit equivalent to 5, 10
and 20 seconds on an idle P4 2.6 GHz machine.

Table 1. Comparison of the executions times obtained by
the MWork MPI and MWork AMS (in seconds)

cluster wload MWork MPI MWork
scenario unit S | SE | OD AMS

5s 180.36 180.30 | 181.97

(1 10s 359.56 359.01 | 362.67
20s 718.54 717.06 | 723.81

grid wload MWork MPI MWork
scenario unit S | SE | oD AMS

5s 643.78 140.39 | 157.99 | 141.79

2) 10s 1312.32 | 279.98 | 316.37 | 282.56

20s 263291 | 559.56 | 634.80 | 563.88

grid wload MWork MPI MWork
scenario unit S | SE | OD AMS

5s 492.03 | 210.08 | 157.85 | 142.66

3) 10s 986.22 | 420.66 | 317.13 | 282.97

20s 1943.10 | 838.16 | 633.54 | 573.44

The results obtained for Scenario (1) shows that even
in an homogeneous and dedicated environment, that is
completely favorable to MPI 1PProc execution model, the

IEE l-:

COMPUTER
SOCIETY

Seventh IEEE International Symposium on Cluster Computing and the Grid(CCGrid'07)
0-7695-2833-3/07 $20.00 © 2007 IEEE

MWork AMS achieves very good execution times consider-
ing the overheads to manage the execution of each worker
process, one at a time on each processor, as well as monitor
for failures. The difference was only 1% at most from the
best values obtained by MWork MPI.

In Scenario (2), the best execution times were achieved
by MWork SE-MPI and MWork AMS. In this case, as the
environment is static and not shared, the estimates given
to MWork SE-MPI allow the algorithm to optimally divide
the workload before execution and thus obtain good per-
formance. Note however that this information must be pro-
vided by the programmer or some other middleware capable
of verifying the computational power of available resources
and the master must be coded to balance the workload dis-
tribution. All this extra work does not lead to an efficient ex-
ecution when the environment is dynamic, as shown in Sce-
nario (3). In this scenario, common in grid environments,
the best results were achieved by MWork AMS thanks to its
ability to efficiently and proactively redistribute the work-
load accordingly. Here MWork OD-MPI performs better
than MWork SE-MPI since the former is able to adjust to
variations in the computational power of resources.

The benefits of the EasyGrid AMS management are not
only to provide efficient and robust execution in grid envi-
ronments, but also to make the MPI programmer’s task eas-
ier. As the MWork OD-MPI, shows the best performance
among the MPI implementations for grid platforms, the fol-
lowing experiments only compare the on demand MPI im-
plementation with the AMS one on the full four site grid
environment. In each experiment, extra CPU-bound pro-
grams were executed on four different machines (1 in Site
1, 1 in Site 3 and 2 in Site 4).

The results of a second set of experiments, seen in Ta-
ble 2, show the average execution times obtained by run-
ning the MWork applications with 1000 non-uniform work-
load units. In this case, 50% of the workload units required
20 seconds of computing time, 25% 10 seconds, and the
remaining 25% required 5 seconds.

Table 2. Comparison of the executions times achieved by
the MWork with non-uniform workload units (in seconds)

Random MWork | Sorted MWork | MWork
OD-MPI OD-MPI AMS
| 584.45 | 53843] 43841 |

Two OD-MPI implementations are considered. The first
does not have knowledge of the workload unit distribution.
In this case, five different random orders were specified
and each executed three times so that the average execu-
tion time appears in column Random MWork OD-MPI. In
the second version, denoted in Table 2 as Sorted MWork
OD-MPI, workload units were delivered by the master in

non-increasing order of their size as specified by the pro-
grammer. In the case of the MWork AMS, both the static
and dynamic schedulers sort the tasks in non-increasing or-
der of their computation cost. The results in Table 2 shows
that the average execution times achieved by both OD-MPI
versions are worse than those obtained by MWork AMS.

It is important to clarify that the grid environment used in
the previous experiment was dedicated, stable and with re-
sources of various fixed computational powers. The Easy-
Grid AMS deals very nicely with the heterogeneity of the
system automatically, since its schedulers have the ability
to adjust when and where a chosen process should be exe-
cuted. This is achieved efficiently by monitoring computa-
tional power being delivered to the application by the avail-
able resources, and predicting the completion times of pro-
cesses waiting to be executed. The same cannot be said of
MWork-OD MPI, since it employs a greedy approach - de-
livering the next workload unit to the worker that finishes
first independent of the resource on which it is executing -
minimizing the workload’s start time rather than its finish
time. Smarter implementations of traditional MPI applica-
tions are possible, but the intricacies of the grid environment
should not be the responsibility of the grid programmer.

Table 3. Comparison between OD-MPI and AMS-based
implementations of the Thermions application (in seconds)
| N || Thermions OD-MPI | Thermions AMS |

1000 136.08 130.73
3000 377.18 373.20
5000 619.88 615.84
10000 1355.56 1302.56

The following experiment investigates the scalability of
the AMS approach with a large-scale, real world appli-
cation. The results, reported in Table 3, were obtained
for executions of the Thermions application with differ-
ent numbers, N, of thermions. The computational cost of
each thermion is difficult to predict a priori and varies be-
tween 4 and 4.5 seconds on an idle 2.6 GHz machine. The
Thermions AMS must manage the execution of more than
N processes (including the management processes them-
selves). The applications were executed on the four site grid
with dedicated resources. The results show that the 1PWork
execution model is competitive in this stable environment.

5.4. Grid Dynamism versus Different Policies

To evaluate the performance in dynamic environments,
the following experiments were carried out considering the
same grid environment but with different resource usage
policies. For these tests, Sites 2 and 3 were dedicated to the
experiment, while Sites 1 and 4 were shared with other ap-

IEE I-'

COMPUTER
SOCIETY

Seventh IEEE International Symposium on Cluster Computing and the Grid(CCGrid'07)
0-7695-2833-3/07 $20.00 © 2007 IEEE

plications. The resource usage policy of Sites 1 and 4 only
permit resources to accept grid jobs when they are idle.

The experiments were semi-controlled, initially a CPU-
bound program was launched on each machine of Sites 1
and 4, so that only resources in Sites 2 and 3 were available
to the Thermions applications. Furthermore, on average 10
machines from Site 4 were being used by local users. The
Thermions OD-MPI could only execute on Sites 2 and 3
because its processes are created at startup and only on the
resources available. At a certain point during the execution
of each Thermions instance, all of the CPU-bound programs
that were initially launched in the Sites 1 and 4 complete.
The Thermions AMS management processes are capable of
detecting that all the resources of Site 1 and some from Site
4 have become idle, and so redistribute some of the worker
processes to these resources.

Table 4 presents the average of the execution times ob-
tained by the Thermions applications with 1000 workload
units. The Thermions OD-MPI results are shown in the
first column, while the results achieved by the execution
of Thermions AMS, under four different scenarios, are pre-
sented in the remaining columns. Each scenario indicates
the approximate time that the shared resources were made
available to the Thermions processes, counting from the be-
ginning of its execution: (1) just after the initialization of
the application; (2) after 50 seconds; (3) after 100 seconds;
(4) and never.

Table 4. Comparison of the executions times achieved by
the Thermions in shared environments (in seconds)

Thermions Thermions AMS
OD-MPI O T o106 1
| 197.87 | 139.78 | 152.57 | 170.22 | 199.32 |

The execution time for Thermions OD-MPI was better
than the Thermions AMS only in scenario (4), where the
grid available (resource in Sites 2 and 3 only) is ideal for the
standard MPI model: stable, dedicated and homogeneous.
As before, the 1% difference is due to AMS overheads to
initialize the management structure and implement the ex-
ecution model. On the other hand, the results obtained by
the Thermions AMS in scenarios 1, 2 and 3 show that the
middleware is able to deal well with the grid’s dynamic and
shared behavior and adapt to take advantage of different re-
source usage policies. Note that scenario 1 gives a larger ex-
ecution time than the corresponding experiment in Table 3.
This is due to the fact the AMS must detect and be sure that
each resource has really become idle.

5.5. Grid Processes Failures

Grids systems are more prone to failures than traditional
high performance environments like supercomputers and

clusters. The purpose of the next experiment is to evaluate
the performance of the MWork AMS when multiple process
failures occur. This analysis highlights the benefits of creat-
ing workers dynamically and scheduling them carefully. In
this experiment, when a process fails, its execution will be
re-started from the beginning, since no checkpoint mecha-
nisms are being considered.

The following execution times on the four site grid were
obtained running the MWork AMS and MWork OD-MPI
with 1000 workload units of 5 seconds each. The results
achieved with no process failures were 164.00 and 202.65
seconds, respectively. Three failure scenarios (S) were then
evaluated: 1% of the application processes failed (10 pro-
cesses); 3% of the application processes failed (30 pro-
cesses); and 5% of the application processes failed (50 pro-
cesses). To simulate processes failures, a script killed the
respective number of processes in five different resources
distributed across Site 1, 2 and 3. Also, the total number
of process failures was evenly distributed among these 5
resources. Two different situations were considered with
regard to the moment at which the processes started to be
killed: 50 seconds after application startup; and 100 sec-
onds after. The processes on each of the chosen resources
were killed at intervals of 6 seconds. Thus, for example, if a
total of 50 processes fail (10 per processor), the application
would suffer process failures during 60 seconds approxi-
mately on five resources.

Figure 2 presents the performance of each of the three
failure scenarios. Two important characteristics of the fault
tolerance mechanisms embedded in the MWork AMS can
be highlighted. One, the penalty of re-executing these pro-
cesses is very low, proportional to the quantity of failures
and to the average workload lost (2.5s). Although an over-
head is incurred on the resources where the failures oc-
curred, the extra amount of time spent with process re-
execution was efficiently dealt with by the dynamic sched-
uler. Another conclusion is that, the results show that the
performance of the application does not depend on the mo-
ment of failure, so long as the dynamic scheduler has time to
balance the workload evenly. Even in an extreme situation
(5% of failures occurring after 100 seconds), when the last
process failure occurred almost at the end of the execution,
the increase in the execution time was less than 1.1%.

Figure 2 also presents the theoretical performance of the
MWork OD-MPI application given that since processes typ-
ically share the same MPI communicator, should one pro-
cess fail the whole application fails and therefore requires
to be re-executed. Application failure could be overcome
if the programmer uses distinct communicators, however,
the resources on which processes fail can only be used af-
ter failure if the master process is able to recreate worker
processes dynamically.

IEE I-'

COMPUTER
SOCIETY

Seventh IEEE International Symposium on Cluster Computing and the Grid(CCGrid'07)
0-7695-2833-3/07 $20.00 © 2007 IEEE

19 of process failures —— |

5% of process failures -
300 | one process failure in MPI

execution time (seconds)

180 [

*

boooomcinizzis

160
no failure

after 50 seconds after 100 seconds

failure scenarios

Figure 2. Application performance with failures.

6. Concluding Remarks

Traditional implementations of MPI applications by the
majority of programmers (typically scientists) are based on
an execution model that is efficient in stable and dedicated
homogeneous environments such as clusters or supercom-
puters. Since grid platforms have quite the opposite charac-
teristics, this work proposes that parallel MPI applications
adopt an alternative execution model - a model which al-
lows the programmer to develop their applications in an ar-
chitectural independent manner. Allowing programmers to
focus their time and energy solely on their application prob-
lem (maximizing the parallelism within it), and ignoring the
complexities of the target architecture, will greatly facilitate
the design of better algorithms and new, larger applications
that require grid computing.

Of course, the gridification burden has now been passed
to a more knowledgeable grid middleware designer. Few
MPI management systems exist to deal with the intricacies
of grid environments. One such system is the EasyGrid
AMS, an application-level middleware, based on standard
LAM/MPI, capable of managing the execution of MPI ap-
plications in grids or clusters more efficiently than tradi-
tional implementations. These improvements are derived
ultimately from the fact that the application is executed
by the AMS according to one process per task execution
model. Versions of the EasyGrid AMS for other classes of
applications are being developed and optimizations to re-
duce the overheads further are being investigated.

References

[1] C. E. R. Alves, E. N. Caceres, F. Dehne, and S. W. Song.
Parallel dynamic programming for solving the string edit-
ing problem on a CGM/BSP. In Proc. 14th Symposium on
Parallel Algorithms and Architectures (ACM-SPAA), pages
275-281. ACM Press, 2002.

[2] C.Boeres and V. E. F. Rebello. EasyGrid: Towards a frame-
work for the automatic grid enabling of legacy MPI applica-

(3]

(4]

(3]

(6]
(7]

(8]

(91

(10]
[11]
[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

Seventh IEEE International Symposium on Cluster Computing and the Grid(CCGrid'07)
0-7695-2833-3/07 $20.00 © 2007 IEEE

tions. Concurrency and Computation: Practice and Experi-
ence, 16(5):425-432, April 2004.

R. Buyya and S. Venugopal. The gridbus toolkit for service
oriented grid and utility computing: An overview and status
report. In Proc. of the st IEEE Int. Workshop on Grid Eco-
nomics and Business Models (GECON 2004), pages 19-66,
Seoul, Korea, April 2004. IEEE Computer Society Press.

E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems. ACM Computing Surveys, 34(3):375-408, 2002.
S. Fortune and J. Wyllie. Parallelism in random access ma-
chines. In Proc. 10th ACM Symposium on Theory of Com-
puting, pages 114-118, 1978.

1. Foster. Designing and Programming Parallel Programs.
Addison-Wesley, 1995.

C. Huang, O. Lawlor, and L. V. Kale. Adaptive MPI. In
Proc. 16th Int. Workshop on Languages and Compilers for
Parallel Computing, pages 306-322. Springer, 2003.

E. Huedo, R. S. Montero, and I. M. Llorente. The GridWay
framework for adaptive scheduling and execution on grids.
Scalable Computing: Practice and Experience, 6(3):1-8,
September 2005.

L. V. Kale and S. Krishnan. CHARM-++ : A Portable
Concurrent Object-Oriented System Based on C++. In
A. Paepcke, editor, Proc. Conference on Object Oriented
Programming Systems, Languages and Applications, pages
91-108. ACM Press, September 1993.

LAM/MPI Parallel Computing.
http://www.lam-mpi.org/, Last access 25/04/2006.
Message Passing Forum. MPI: A Message Passing Interface.
Technical report, University of Tennessee, 1995.
MPICH-G2. http://www3.niu.edu/mpi/, Last ac-
cess 27/09/2006.

A. P. Nascimento, A. C. Sena, C. Boeres, and V. E. F. Re-
bello. Distributed and dynamic self-scheduling of paral-
lel MPI grid applications. Concurrency and Computation:
Practice and Experience, Published online Nov. 2006.

A. P. Nascimento, A. C. Sena, J. A. da Silva, D. Q. C.
Vianna, C. Boeres, and V. Rebello. Managing the execution
of large scale MPI applications on computational grids. In
Proc. 17th Int. Symp. on Computer Architecture and High
Performance Computing (SBACPAD 2005), pages 69-76,
Brazil, October 2005. IEEE Computer Society Press.

P. S. Pacheco. Parallel Programming with MPI. Morgan
Kaufmann Publishers Inc., 1996.

H. Souto, O. da Silveira Filho, C. Moyne, and S. Didierjean.
Thermal dispersion in porous media: Computations by the
random walk method. Journal of Computational and Ap-
plied Mathematics, 21(2):513-544, 2002.

S. Vadhiyar and J. Dongarra. Self-adaptivity in grid com-
puting. Concurrency and Computation: Practice and Expe-
rience, 17(2-4):235-257, February 2005.

L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103-111, 1990.

N. Woo, H. S. Jung, H. Y. Yeom, T. Park, and H. Park.
MPICH-GF: Transparent checkpointing and rollback recov-
ery for grid-enabled MPI processes. IEICE Transactions on
Information and Systems, E87-D(7):1820-1828, July 2004.

IEE l-:

COMPUTER
SOCIETY

